深度學(xué)習(xí)硬件才是進(jìn)步的核心。現(xiàn)在讓我們忘記2008-2012年深度學(xué)習(xí)的快速擴(kuò)展,近年的進(jìn)步主要取決于硬件:在社交媒體的幫助下,每部手機(jī)上的廉價圖像傳感器都可以收集巨大的數(shù)據(jù)集,但其只處于次級重要程度。GPU允許加速深層神經(jīng)網(wǎng)絡(luò)的訓(xùn)練。在過去2年里,機(jī)器學(xué)習(xí)硬件蓬勃發(fā)展,尤其是針對深度神經(jīng)網(wǎng)絡(luò)的硬件。
有幾家公司正在這個領(lǐng)域努力,包括英偉達(dá)、英特爾、Nervana、Movidius、Bitmain、Cambricon、Cerebras、DeePhi、谷歌、Graphcore、Groq、華為、ARM以及Wave Computing等,他們都在開發(fā)定制的高性能微型芯片,能夠訓(xùn)練和運(yùn)行深層神經(jīng)網(wǎng)絡(luò)。關(guān)鍵是提供最低功耗和最高的可測量性能,同時計算最近有用的神經(jīng)網(wǎng)絡(luò)操作,而不是每秒鐘的原始理論操作。但是在這個領(lǐng)域很少有人了解硬件是如何真正改變機(jī)器學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)和AI的,很少有人知道微型芯片的重要性以及如何開發(fā)它們。
訓(xùn)練或推理:許多公司都在制造能提供神經(jīng)網(wǎng)絡(luò)訓(xùn)練的微型芯片。這是為了獲得英偉達(dá)市場的一部分,它是迄今為止事實(shí)上的培訓(xùn)硬件。但這種訓(xùn)練只占深層神經(jīng)網(wǎng)絡(luò)應(yīng)用的很小部分。對于每個訓(xùn)練步驟,實(shí)際應(yīng)用程序中都有上百萬個部署。例如,你現(xiàn)在可以在云端使用的一個目標(biāo)檢測神經(jīng)網(wǎng)絡(luò),它曾經(jīng)被訓(xùn)練過一次,并且在很多圖像上都是可以使用的。但是一旦經(jīng)過訓(xùn)練,它就可以被數(shù)以百萬計的計算機(jī)用于數(shù)十億的數(shù)據(jù)。
我們在這里想說的是,訓(xùn)練硬件的重要性和你所使用的次數(shù)相比是微不足道的,而制作用于訓(xùn)練的芯片組需要額外的硬件和額外的技巧。這將導(dǎo)致相同性能卻消耗更高的功率,因此不是當(dāng)前部署的最佳狀態(tài)。訓(xùn)練硬件是很重要的,而對推理硬件進(jìn)行修改卻很簡單,但它并不像許多人認(rèn)為的那樣重要。
應(yīng)用程序:能夠更快、更低功率地提供培訓(xùn)的硬件在這個領(lǐng)域非常重要,因?yàn)樗鼘⒃试S更快地創(chuàng)建和測試新的模型和應(yīng)用程序。但真正重要的一步是應(yīng)用所需的硬件,主要是推理硬件。今天有許多應(yīng)用之所以無法使用,主要是因?yàn)橛布皇擒浖@?,我們的手機(jī)可以是基于語音的助手,目前是次優(yōu)的,因?yàn)樗鼈儾荒芤恢边\(yùn)行。就連我們的家庭助理也離不開電源,除非我們在周圍安裝更多麥克風(fēng)或設(shè)備,否則就不能跟著我們。但也許最大的應(yīng)用是將手機(jī)屏幕從我們的生活中移除,并將其嵌入到我們的視覺系統(tǒng)中。如果沒有超級高效的硬件,所有這些和更多的應(yīng)用將是不可能的。
贏家和輸家:在硬件方面,贏家將是那些能夠以最低功耗發(fā)揮更高性能、并能將設(shè)備迅速投入市場的公司。想象用手機(jī)代替SoC,這種情況每年都會發(fā)生?,F(xiàn)在想象下將神經(jīng)網(wǎng)絡(luò)加速器嵌入到內(nèi)存中。這可能會更快地征服市場,并快速滲透,這就是我們所說的贏家。