智能視頻分析指計算機圖像視覺分析技術(shù),通過將場景中背景和目標分離進而分析并追蹤在攝像機場景內(nèi)出現(xiàn)的目標。用戶可以根據(jù)的視頻內(nèi)容分析功能,通過在不同攝像機的場景中預設不同的報警規(guī)則,一旦目標在場景中出現(xiàn)了違反預定義規(guī)則的行為,系統(tǒng)會自動發(fā)出報警,監(jiān)控工作站自動彈出報警信息并發(fā)出警示音,用戶可以通過點擊報警信息,實現(xiàn)報警的場景重組并采取相關(guān)措施。
然而在實際環(huán)境中光照變化、目標運動復雜性、遮擋、目標與背景顏色相似、雜亂背景等都會增加目標檢測與跟蹤算法設計的難度,其難點問題主要在以下幾個方面:
背景的復雜性:光照變化引起目標顏色與背景顏色的變化,可能造成虛假檢測與錯誤跟蹤。采用不同的色彩空間可以減輕光照變化對算法的影響,但無法完全消除其影響;場景中前景目標與背景的相互轉(zhuǎn)換,與行李的放下、拿起,車輛的啟動與停止;目標語背景顏色相似時會影響目標檢測與跟蹤的效果;目標陰影與背景顏色存在差別通常被檢測為前景,這給運動目標的分割與特征提取帶來困難。
目標特征的取舍:序列圖像中包含大量可用于目標跟蹤的特征信息,如目標的運動、顏色、邊緣以及紋理等。但目標的特征信息一般是時變的,選取合適的特征信息保證跟蹤的有效性比較困難。
遮擋問題:遮擋是目標跟蹤中必須解決的難點問題。運動目標被部分或完全遮擋,又或是多個目標相互遮擋時,目標部分不可見回造成目標信息缺失,影響跟蹤的穩(wěn)定性。為了減少遮擋帶來的歧義性問題,必須正確處理遮擋時特征與目標間的對應關(guān)系。大多數(shù)系統(tǒng)一般是通過統(tǒng)計方法預測目標的位置、尺度等,都不能很好地處理較嚴重的遮擋問題。
兼顧實時性與魯棒性:序列圖像包含大量信息,要保證目標跟蹤的實時性要求,必須選擇計算量小的算法。魯棒性是目標跟蹤的另一個重要性能,提高算法的魯棒性就是要使算法對復雜背景、光照變化和遮擋等情況有較強的適應性,而這又要以復雜的運算為代價。